

Tide-Surge Interaction in Ensemble Total Water Level Forecasts

Natacha B. Bernier, O. Huziy, P. Wang, K.R. Thompson, B. Pouliot, Y. Liu

MOTIVATION

- Public and private sectors require more accurate forecasts with longer lead times (e.g., for activation of emergency measures including evacuations).
- Strong storms are an ongoing threat to Canadian coastlines (e.g., hours roads, cars, and land) including most recently Hurricane Dorian in 2019.
- Can we provide better guidance, including realistic estimates of uncertainty?

STUDY AND SURGE MODEL REGION

3500

Twice daily (00Z and 12Z) ensemble runs (20+1
members) on surge grid of 1/12° driven with the 10m winds and surface air pressure from the GEPS (~39km grid spacing)

5 Flather type open radiation boundary conditions (N, E and S edge of the model plus GSL and BoF

WHAT WE KNOW

- <u>Ensemble surge forecasts</u> are typically the result of forced simulations using perturbed winds and air pressure
- Resulting surge predictions spread follows that of the atmospheric system.

WHAT WE KNOW

- Tide-surge interaction (TSI) can "focus" surges on particular phase of the tides.
- TSI is present in the study region

WHAT HAPPENS IF WE ALLOW TSI IN TWL ENSEMBLE FORECAST SYSTEM

Spread in surges is reduced particularly in regions with strong tsi

SAMPLING THE UNCERTAINTY

- Given the governing equations, perturbations of the drag coefficient, bathymetry, etc, further modify the spread already resulting from the perturbed atmospheric winds and air pressures.
- How else can we sample uncertainty? We know tides are affected by density structures hence they have a stochastic component. Can we usefully perturb the tides?

WHAT WE KNOW FROM SEA LEVEL OBSERVATION RECORDS

- 22 tide gauges recording total sea level, η_{obs}
- To a first approximation
- $\eta_{obs} = \eta_S + \eta_T + \eta_E$

- η_s : storm surge η_T : tides η_E : error
- Errors can result from observation errors, seiches, baroclinic changes driven by freshwater input and surface heating, etc
- Tides are not purely deterministic (e.g. can vary with environmental conditions such as baroclinicity) so we separate the deterministic and remnant component and rewrite
- $\eta_{\rm T} = \eta_{\rm TD} + \eta_{\rm TR}$
- And it follows that
- $\eta_{obs} \eta_{TD} = \eta_S + \eta_{TR} + \eta_E$

PERTURBING THE TIDES CAN BE IMPORTANT: A POST-PROCESSING EXAMPLE

PERTURBATIONS OF THE M2 OPEN BOUNDARY

006

010

014

018

O1 is perturbed similarly

Environnement et Changement climatique Canada

IMPACT OF PERTURBED OBC AT COASTAL TIDE GAUGES

TWL SPECTRA FOR PERTURBED SURGE AND TIDES

Grey lines show the power spectra of the perturbed members.

SURGE ONLY SPREAD: TSI ACTS TO FOCUS THE SURGES

PRELIMINARY RESULTS: TIDAL PERTURBATIONS IMPROVE SPREAD OF TWL FORECASTS

OVERALL IMPROVEMENT IN OTHER SKILL SCORES WHEN TIDES ARE PERTURBED

CONCLUSIONS

- Uncertainty is not a sign of bad models or science.
- Surge predictions are improving. Expect rapid progress over next 5 years at ECCC with (i) better atmospheric forcing, (ii) global, higher resolution models of TWL (iii) improved perturbation methodology (iv) coupling to wave models. But uncertainty will remain.
- An outstanding problem is the communication of risk of flooding to individuals and organizations.

FUTURE: GLOBAL TWL FORECASTS

M2 complex error in m(shading, left colorbar) and RMSE of TWL at gauges in m (dots, right colorbar)

